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T
he growing interest in the self-assem-
bly of binary mixtures of nanoparti-
cles into superlattices is driven both

by fundamental and applied aspects. From
thepractical point of view, suchmetamaterials
may exhibit interesting physical properties,
such as negative refractive index or super-
lenses capable of imaging objects that are
much smaller than thewavelength of light.1�3

From a fundamental perspective, the self-
assembly of binary mixtures is still a great
mystery. The pioneeringwork of Shevchenko,
Talapin, O'Brien, Murray, and co-workers4�9

on the structural diversity of binary nanopar-
ticle superlattices along with the intriguing
recentdiscoveryofquasicrystallineorder inself-
assembled binary nanoparticle superlattices,10

are not well understood.
Of particular importance to the present

study is the work of Shevchenko et al.,8 who
demonstrated the formation of more than
15 different binary superlattice structures;
10 of them were never reported before.8

The common wisdom based on the hard
spheres (HS) model11�13 leads to the forma-
tion of a variety of superstructures such as
the face centered cubic (fcc), the hexagonal

closed packing (hcp), rocksalt (NaCl), AlB2 or
the AB13 (NaZn13), all in maximal packing
volume fractions.14 The fcc and hcp super-
structures usually consist of one particle
type, or interlacing structureswhere twodif-
ferent building blocks arrange themselves
each in a fcc structure and are combined
together (such as the NaCl structure).
Depending on the size ratio of the parti-

cles (γAB = RB/RA), binary mixtures can even
assemble into structures with packing den-
sities larger than the fcc or hcp packing
(∼0.74) where smaller particles fill the voids
between larger particles.15,16 Such structures
are typically the most stable thermodynami-
cally.11,12,14 In fact, the size ratio and stoichio-
metry determine solely the lattice structure at
equilibrium. For a low size ratio, γAB < 0.4, the
typical stable structure is that of the ABn (NaCl
for n = 1, AB2 for n = 2, AB4 for n = 4, etc.,
depending on stoichiometry). For intermedi-
ate size ratios, 0.45 < γAB < 0.624, structures of
the type AB2 are most stable. These include
AlB2 for 0.53 < γAB < 0.624, HgBr2 and AuTe2
for 0.41 < γAB < 0.53. NaZn13 or orthorumbic-
AB13 are also predicted to be metastable in
this range of size ratio.17
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ABSTRACT The assembly of mixtures of nanoparticles with different properties into a

binary nanoparticle superlattice (BNSL) provides a route to fabricate novel classes of

materials with properties emerging from the choice of the building blocks. The common

theoretical approach based on the hard-spheres model predicts crystallization of only a few

metastable binary superstructures (NaCl, AlB2 or the AB13). Recently [Shevchenko, E. V.;

Talapin, D. V.; O'Brien, S.; Murray, C. B. Nature 2006; 439, 55.)], it has been demonstrated

that with the use of a combination of semiconducting, metallic, and magnetic nano-

particles, a variety of novel BNSL structures were formed, where at least 10 were low density

structures that have not been previously reported. While some of the structures can be

explained by the addition of electrostatic interactions, it is clear that at the nanometer scale one needs to consider other influences, such as van der Waals

forces, steric effects, etc. Motivated by those experiments, we study, using Monte Carlo simulations, the phase behavior of binary mixtures of nanoparticles

interacting via a combination of hard-core electrostatics and van der Waals forces. We include a tuning parameter that can be used to balance between

electrostatic and dispersion interactions and study the phase behavior as a function of the different charges and size ratios of the nanoparticles. The results

indicate that at the nanoscale, both electrostatic and dispersion interactions are necessary to explain the experimental observed BNSL structures.
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However, entropic considerations alone are insuffi-
cient to describe the diversity of structures observed by
Shevchenko et al.8 In particular, binary assemblies into
low volume fraction superstructures cannot be explained
by the hard spheres model.18�20 These include, for
example, the Cu3Au type lattice for a size ratio of 0.58
or the MgZn2 for a size ratio of 0.48. Thus, it remains a
challenge to uncover the necessary or sufficient inter-
actions leading to a diversity of binary superlattices of
nanoparticles, regardless ofwhether these are at thermo-
dynamic equilibrium or metastable structures.21 What is
the nature of interparticle interactions giving rise to a
diversity of superstructures as well as quasicrystalline
order beyond the simple hard spheres description?
Shevchenko et al. pointed out that “it is specifically at
the nanoscale that the van der Waals, electrostatic, steric
repulsion, and the directional dipolar interactions can
contribute to the interparticle potential with comparable
weight. These, together with the effects of particle sub-
strate interactions and space-filling (entropic) factors,
combine to determine the binary superlattice structure.”
An attempt to better understand the phase behavior

of binary mixtures beyond the hard spheres model has
recently been proposed by van Blaaderen an co-
workers.22 A combined experimental and theoretical
study of ionic crystals of oppositely charged microparti-
cles uncovered the role of long-range interactions.23�26

Adding salts to the apolar colloidal suspensions offers
control over the particle charge in addition to regulating
the screening length. A pronounced phase change from
NaCl to CsCl superstructurewas observed as a function of
the salt concentration, keeping the particle size fixed.
Computer simulations based on the Yukawa model27

gave a consistent picture with the experiments.
It is clear, however, that the description based on the

Yukawa model cannot be valid for nanoparticles,
where the dispersion interactions compete with the
long-range electrostatic forces. This is a result of the
smaller size of particles at the nanoscale that can account
for small surface charges, thereby reducing the contribu-
tion of electrostatics in comparison with the large micro-
particles. Thus, it is expected that dispersion interaction
will be of similar magnitude to the electrostatic forces. In
this work, we explore the interplay between dispersion
interactions and longer-range electrostatic forces by
constructing a schematic phase diagram of binary mix-
tures of nanoparticles interacting via a combination of
Hamaker and Yukawa potentials. We study the phase
behavior as a function of the different model parameters
including the size ratio of the nanoparticles, the charge
ratio, and the ratio of electrostatic to dispersion interac-
tions. In the Model Potential section we describe the
model developed to study the interplay between disper-
sion interactions and longer-range electrostatic forces.
The Results' section is dedicated to present the results
and in the Discussion and Conclusions section we pro-
vide a discussion of the results and conclusions.

MODEL POTENTIAL

We assume that the total interaction potential can
be described by a sum of pairwise interactions, where
the pairwise potential includes a dispersion and screened
Yukawa terms:

Uij(r) ¼ νUH
ij (r)þ (1 � ν)UY

ij (r) (1)

In the above, Uij(r) is the total two-body potential
between particles i ∈ A,B and j ∈ A,B, and ν is a
parameter taken between 0 and 1. For ν = 0 the model
reduces to the Yukawamodel while for ν = 1 themodel
describes pure Hamaker-type interactions. Following
the work of van Blaaderen and co-workers,22 we de-
scribe the long-range electrostatic portion of the interac-
tions between the nanoparticles by a Yukawa potential
supplemented by a short-range repulsion term:

UY
ij (r) ¼ UHS

ij (r)þRYZiZj
exp(�Kr)

r
(2)

where r is the distance between two particles, RY is a
constant that determines the overall strength of the
interactions, Zi,j is the charge number of particle i, j ∈ A,B,
and κ is the reciprocal screening length. The first term in
the above equation describes the hard core repulsion
given by

UHS
ij (r) ¼

0 rgσij

UHS
max r < σij

(
(3)

where σij is the contact distance of two particles σij = Riþ
Rjþ σS, Ri,j is the radius of particle i,j, σS =

2/3RB is used as a
shell to circumvent the pathological behavior of the
Hamaker potential (see eq 4 below), and Umax

HS =
10000KBT such that further increasing the value of
Umax
HS does not affect the results for the free energy (see

below for further discussion).
The dispersive portion of the interaction potential is

described by a Hamaker-type28 combined with a sharp
cutoff, given by

UH
ij (r) ¼ UHS

ij (r)þ
�AijΠ

2

3
Rj

r � Ri

(r � Ri)
2 � R2j

� rþ Ri

(rþRi)
2 � R2j

 !(

þ 1
2
ln

r2 � (Ri þ Rj)
2

r2 � (Ri � Rj)
2

 !

þ R3j
r

1

(rþ Ri)
2 � R2j

� 1

(r � Ri)
2 � R2j

 !)
(4)

where Aij is related to the Hamaker constant.
To reduce the number of parameters, we assume

that both the Yukawa and the dispersion interactions
share an identical contact energy of �5KBT. This is
obtained by adjusting the potential parameters ac-
cording to

UAB(σAB) ¼ νU(σAB)
H
AB þ (1 � ν)U(σAB)

Y
AB

¼�5KBT (5)

for each value of ν.
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In Figure 1 we plot the total pair potential between
A�A, A�B, and B�B nanoparticles, for different values
of ν andQ =�ZA/ZB. In all cases, themodel parameters
were adjusted so that the A�B contact interaction
(the minimum of the pair-potential) was fixed at a
value of �5kBT. The parameters are summarized in
Table 1. In all cases, regardless of the value of ν the
A�B interactions are quite similar. However, as ν
is increased the A�A and B�B repulsive interac-
tion become attractive. The major effect of increasing
the portion of dispersion forces is reflected in the
A�A and B�B interactions, but not in the A�B
interactions. This transition will play an important
role in analyzing the superlattices of Shevchenko
et al.8

RESULTS

We consider nine different superlattices, a subset of
the structures reported by Shevchenko et al.8 These
include the NaCl, CsCl, Cu3Au, AuCu, AlB2, MgZn2, Fe4C,
CaCu5, and NaZn13. A sketch of the crystal structures is
shown in Figure 2, and a summary of the superstructures
reported in ref 8 for different values of the size ratio is
given in Table 2.

Figure 1. Pair potential A�A (left panels), A�B (middle panels), and B�B (right panels) as a function of distance between
particles, for three values ofQ:Q=3 (upper panels),Q=5 (middlepanels), andQ=8 (lowerpanels). Black, red, green, blue, and
magenta correspond to ν=0, ν=0.2, ν=0.5, ν=0.7, and ν=0.9, respectively. The results shownare for particles of similar size.

TABLE 1. Yukawa and Hamker Model Parametersa

γAB RYQ A11 A12 A22 κRB

0.33 �6310 �12.067 �12.067 �12.067 1
0.50 �9843 �15.9 �15.9 �15.9 1.5
0.58 �10091 �16.1 �16.1 �16.1 1.74
0.68 �13649 �18.8 �18.8 �18.8 2.04
1.00 �39748 �31.2 �31.2 �31.2 3

a In all calculations ZB = 1 and RB is fixed. The units of Aij is kBT and the units ofRY is
kBT � RB.

Figure 2. A sketch of the nine crystals structures studied.
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The nine crystal structures provide a valuable set to
assess the importance of competing interactions govern-
ing the formationof binary superlattices at thenanoscale.
Not all structures canbederived fromentropic considera-
tion alone. For example, AuCu appears at γAB≈ 0.66 and
CaCu5 appears at γAB ≈ 0.69. These structures are not
metastable in the binary hard spheres model.13 More-
over, some structures appear at size ratios outside the
range found by the binary hard spheres model14 or by
the binary Yukawa model.22 For example, the AlB2 struc-
ture appears at γAB = 0.45 but is not a metastable
structure of either of the aforementioned models.
For each system we have carried out a detailed

analysis of the free energy based on the approach de-
scribe in the Methodology and Computational Details
section. Calculations for the free energywere carried out
only for systems that were stable during the constant
pressure run. For the current model, the Fe4C structure
and the MgZn2 structure observed experimentally8 at
γAB= 0.48were computationally not stable for any set of
model parameters studied.

The simulation box consists of 216 nanoparticles for
NaCl and AlB2, 250 for CsCl, 256 nanoparticles were
used to simulate the Cu3Au and AuCu structures, 320
for Fe4C, 192 for MgZn2, 240 nanoparticles for CaCu5,
and 224 for NaZn13. The inverse screening length in the
Yukawa potential was taken to be κ(RBþ 1/2σS) = 4. We
studied the role of the aspect ratio γAB = RB/RA, the
charge ratioQAB =�ZA/ZB and the ratio of dispersion to
electrostatic contribution to the interactions between
the nanoparticle ν. All simulations were carried out at
ambient conditions.
In Figure 3 we plot the free energy calculated for the

pure electrostatic case, that is, ν = 0 as a function of the
charge ratio QAB for four different values of γAB. For
each size ratio, only 3�4 structures were found to be
metastable. For γAB =

1/3 the NaCl structure is the only
stable structure for QAB e 2 while for charge ratios
larger than 4 we find that both Cu3Au and AlB2 are also
metastable. In between these values of the charge ratios,
the only metastable structure is the AlB2. The results for
small values of QAB are consistent with the hard spheres
model, which also predicts the NaCl structure to be the
stable one at γAB =

1/3. The AlB2 structure is likely to be
stabilized by the electrostatic interactions at intermedi-
ate charge ratios and therefore does not appear at this
size ratio for the hard spheres model.
As the size ratio is increased to 1/2, the NaCl structure

becomes metastable even at charge ratios of QAB = 5
and becomes unstable above this value. This is cer-
tainly different in comparison to the hard spheres
model, where the most stable structure is predicted
to be the AlB2. The Cu3Au structure is also metastable
across a large range of QAB for γAB = 1/2, even larger
than the case of γAB =

1/3.
This trend continues as the size ratio is further increased

beyond 1/2. At low values of QAB, the NaCl structure is

TABLE 2. A Summary of the Structure Obtained in the

Study of Shevchenko et al.8a

size ratio structure

0.37 (5 nm/13.4 nm) NaCl
0.45 (3 nm/6.7 nm) AlB2
0.48 (3 nm/6.2 nm) MgZn2, Fe4C, cube-AB13
0.52 (3 nm/5.8 nm) CaB6, MgNi2
0.58 (4.2 nm/7.2 nm) Cu3Au, NaZn13
0.66 (5 nm/7.6 nm) AuCu
0.69 (5 nm/7.2 nm) CaCu5
a Note that the definition of γAB is based on the size ratio of the core of the
nanocrystals similar to that in ref 8. More recently, Bodnarchuk et al.31 also included
corrections due to the ligand shell.

Figure 3. Free energy as a function of charge ratioQAB for four values of γAB and for ν = 0, that is, the pure electrostatic case.
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still the only metastable structure. However, as
QAB f 2, the AuCu becomes metastable as well in
the range of 2 e QAB e 3. We note that Shevchenko
et al. reported on the formation of Cu3Au type struc-
ture for γAB = 0.58.8 Our results for ν = 0 suggest that
the structure is metastable and could be stabilized by
electrostatic interactions.
As the size ratio is further increased to γAB = 0.68, the

picture changes qualitatively. The AlB2 becomes un-
stable for any values ofQAB. At lower value ofQAB in the
range 1 e QAB e 3 both NaCl and AuCu structures are
metastable. While NaCl has not been observed experi-
mentally at this size ratio, AuCu has been reported by
Shevchenko et al.8 at γAB = 0.66.
In Figure 4 we plot the free energy calculated for the

case ν= 1/2 as a function of the charge ratioQAB for four
different values of γAB. For each size ratio, only 2�4
structureswere foundmetastable. Comparing the overall
results to those shown in Figure 3 for the pure electro-
static case, we note that the free energy per nanoparticle
is lower when dispersion interactions are introduced,
despite the fact that the A�B contact interaction was
fixed to �5kBT. This can be traced to the change in the
A�A and B�B interactionswhich at larger values of ν can
even become attractive (see Figure 1).
At γAB = 1/3, we find three structures to be meta-

stable, NaCl, AlB2, and Cu3Au across all values of QAB.
This is in contrast to the pure electrostatic case, where
the rocksalt is metastable at low values of QAB (and is
unstable at high value of QAB) and the AlB2 at high
values of QAB (and is unstable at low values of QAB). At
higher values of γAB g 0.5, the rocksalt structure
becomes unstable for all values of QAB.
At γAB =

1/2 only two structures appearmetastable;
the AlB2 structure and the Cu3Au structure. This is
consistent with the picture emerging for the hard

spheres model and the only major difference when
dispersion interactions are introduced in addition to elec-
trostatic forces is that the rocksalt structure becomes
unstable at this size ratio. In general, we find that disper-
sion interactions favor theAlB2which is also the favorable
structure of the hard spheres model. Comparing the
results from theCu3Au structure, it is clear that it becomes
relatively more stable at smaller values of QAB when
dispersion interactions are switched on in comparison
to the pure electrostatic case.
Returning to the results shown in Figure 4 for a size

ratio γAB = 0.58, here, the AlB2 is metastable across all
values ofQAB. AuCu becomesmetastable at intermediate
charge ratios, 2 e QAB e 8, while Cu3Au is metastable
above QAB g 2. This is the structure that was observed
experimentally for this size ratio.8

As we further increase the size ratio to γAB = 0.68 a
new structure becomes metastable;the CsCl which is
metastable for all charge ratios studied. This structure
is further stabilized by dispersion interactions (see
below). Furthermore, AuCu is also metastable for all
charge ratios. This is consistent with the experimental
results of Shevchenko et al. for size ratio of 0.66.8

However, Shevchenko et al. also observed the CaCu5
structure at size ratio of γAB = 0.69, while we find this
structure to be unstable at all values of QAB. At larger
charge ratios, aboveQAB = 7, the AlB2 is still metastable,
while for the pure electrostatic case, this structure was
unstable, suggesting that the dispersion forces stabi-
lize the AlB2 structure.
The appearance of CsCl and AuCu at larger values

of γAB is consistent with the space filling analysis
of the hard spheres case.31 The space filling factor
of NaCl decreases below AlB2 at γAB > 0.45 and space
filling of CsCl and AuCu increases above that of NaCl
at γAB > 0.55.

Figure 4. Free energy as a function of charge ratio QAB for four values of γAB and for ν = 1/2.

A
RTIC

LE



BEN-SIMON ET AL. VOL. 7 ’ NO. 2 ’ 978–986 ’ 2013

www.acsnano.org

983

In Figure 5 we plot the free energy calculated for the
case ν = 3/4 as a function of the charge ratioQAB for the
same four values of γAB. Similar to the case discussed
above for ν = 1/2, the structures that were stabilized by
dispersion interactions are stabilized even more when
the portion of the dispersion is further increased. The
major differences in comparison to the ν = 1/2 case are
that the free energy of theNaCl structure ismuch lower
for γAB = 1/3 and the AuCu structure becomes meta-
stable for all values ofQAB for γAB >

1/2. Qualitatively, for
γAB = 0.68 the results are similar to the case of ν = 1/2.
In Table 3 we provide the results of the free energy

calculations for the case of ν = 1, where only dispersion
interaction are included. For this case, at γAB =

1/3, NaCl
and NaZn13 are the only metastable structures, similar
to the hard spheres model. For γAB = 1/2 the only
metastable structure is AlB2. Four structures appear to
be metastable for a size ratio of γAB = 0.58: NaZn13,
AlB2, AuCu, and CaCu5. The latter appears to be stabi-
lized only for the pure dispersive case. For the largest

size ratio of 0.68, Shevchenko et al.8 reported the for-
mation of the CaCu5 structure. Once again, this struc-
ture is only stabilized when the dispersion interactions
are dominant. We find three additional metastable
structures at this size ratio: AuCu, CsCl, and AlB2.
A summary of the results described in this section is

given in Figure 6, where we plot a schematic phase
diagram. The lines do not represent the exact phase
boarder between different structures. We did perform
other simulations within the range of size ratios in each
case to confirm the general trends. We find that elec-
trostatic interactions favor the AB structure (such as
NaCl structure for small size ratios and AuCu for larger
size ratios) at low charge ratios and AB2 structure for
intermediate to high charge ratios, irrespective of the
size ratio. When dispersion interactions are added the
behavior depends on the size ratio. For small size ratios,
we find that dispersion interactions stabilize the NaCl
for all charge ratios. At intermediate size ratios, typi-
cally the AlB2 structure will bemetastable across awide
range of size ratios. At high charge ratio, the addition of
dispersion interactions stabilizes the AuCu structure.
Two other points to be noted are the appearance of
Cu3Au only when electrostatic interactions are present
and the appearance of CaCu5 and NaZn13 for the pure
dispersive case.
With respect to the structures obtained experi-

mentally,8,32�35 one cannot overlook the importance
of pure repulsion interactions. It seems that in most
cases the denser structure is also the one observed
experimentally.8,32�35 This indicates that the regime at
which these structures crystallize must be similar to
that of the hard spheremodel and can be explained by
space filling analysis.31 Yet there are deviations from
the hard sphere case. Our model can capture both the
hard sphere limit and also consistently account for

Figure 5. Free energy as a function of charge ratio QAB for four values of γAB and for ν = 3/4.

TABLE 3. Free Energy per Particle (in Units of kBT) Results

for Case of ν = 1 for the Different Crystal Structures

Studied

size ratio structure free energy

0.33 NaCl �51.8
NaZn13 �20.9

0.50 AlB2 �19.8
0.58 NaZn13 �29.4

AlB2 �17.8
AuCu �17.3
CaCu5 �3.8

0.68 CsCl �18.0
AuCu �18.0
AlB2 �15.4
CaCu5 �6.8
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deviations from it. For example, the formation of binary
structures at γAB > 0.62 cannot be explained from
entropic considerations alone, since the hard sphere
model will predict the formation of a phase-separated
structure or a random close packing structure. In addi-
tion, low space filling structures, such as the Cu3Au or
the CaCu5 are not predicted to occur in the hard
spheres model.

DISCUSSION AND CONCLUSIONS

The goal of the present study was to understand the
role of interactions between nanoparticles forming
binary superlattices and the balance between electro-
static and dispersion interactions leading to the ob-
served diversity of binary superlattices. To better
understand the formation of the different superstruc-
tures and the interplay between dispersion and elec-
trostatic interactions, we have carried out simulations
of the stability of nine different binary superstructures.
We find that neither electrostatic or entropic interac-
tions alone explain the diversity of superstructures
formed. Indeed, there is a strong correlation between
structures with large space filling factor and those ob-
served experimentally. However, in some cases we find
deviations from this rule, which requires the addition of
dispersion interactions to stabilize the observed struc-
tures at the correct size ratio. Moreover, we find a weak
correlation between the metastable structures of the
pure electrostatic case, some are of low space filling
factors, and the structures observed experimentally. The
following points support these conclusions:
(1) Our results suggest that NaCl is metastable for a

broad range of size ratios only for the case of pure
electrostatic interactions (ν= 0) at relatively low charge

ratios (Q < 3). The fact that NaCl appears at a size ratio
γAB > 0.37 is not consistent with the experiments of
Shevchenko et al.,8 where NaCl appears only at γAB =
0.37. However, when dispersion interactions are intro-
duced to our model, NaCl structure becomes meta-
stable at size ratios γAB < 0.45, more consistent with the
experiments.8

(2) A similar conclusioncanbedrawn for thecaseof the
AuCu structure, which appears at a size ratio γAB > 0.65 as
reported by Shevchenko et al.8 Our results suggest that
when dispersion interactions are included (ν> 0), AuCu is
metastable for low to intermediate values of QAB.
(3) Shevchenko et al.8 reported that AlB2 appears at a

broad range of size ratios, most noticeably at a size
ratio of γAB = 0.45 and γAB = 0.68. Once again, if only
electrostatic interactions are considered, AlB2 is not
even metastable at size ratios γAB > 0.6. When disper-
sion interactions are included, AlB2 becomes meta-
stable at size ratios γAB > 0.45, consistent with the
experiments. Furthermore, AlB2 is the only metastable
structure at γAB < 0.45 for intermediate charge ratios
for the pure electrostatic case. However, this is not ob-
served experimentally.
(4) Experimentally, at size ratios γABg 0.65 either the

CaCu5 structure (with trioctylphosphine oxide (TOPO))
or AuCu structure (without TOPO) were observed. In
this case, TOPO serves as a capping layer reducing the
net charge on the particles. This would translate to a
change in QAB, but more importantly to a change in ν
diminishing the electrostatic contribution. Further-
more, at size ratio of 0.58, electro-mobility measure-
ments indicate that CaCu5 structure is metastable with
vanishing charges.33 Our results suggest that these
structures are metastable for the pure dispersion case

Figure 6. Schematic phase diagram showing the metastable structures for each value of ν, QAB, and γAB. The boundaries
between phases are a sketch and were not determined precisely.
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(ν = 1) for size ratios γABg 0.55 and when electrostatic
interactions were included (0 < ν < 1/2), AuCu struc-
ture is metastable only when γAB g 0.55, while CaCu5
becomes unstable. These results suggest that (a) elec-
trostatic interactions alone are not sufficient to explain
the experimental results of AuCu and CaCu5, and
(b) when CaCu5 is observed, electrostatic interactions
are negligible, consistent with the effect of capping
with TOPO.
(5) The special case of size ratio γAB = 0.58 demon-

strates the delicate interplay between electrostatic and
dispersion interactions. Experimentally, at this size
ratio the metastable structures found were Cu3Au,
NaZn13, CaCu5 and AlB2.

8,32,33 While the results of
Shevchenko et al. for the former two were explained by
electrostatic interactions,8 the latter two structures were
shown to form with vanishing charges.32,33 Our results
are consistent with both reports, showing that the Cu3Au
structure is stabilized onlywhen electrostatic interactions

are included while NaZn13 and CaCu5 structures are
stabilized by dispersion interactions alone.
In summary, considering the nine different super-

structures and comparing the results obtained in the
experiments, we believe that both electrostatic and
dispersion interactions need to be considered in the
assembly of binary mixtures of nanoparticles. We find
that consistency with experiments is obtained when
dispersion interactions supplement the electrostatics,
and often are even more important. The most diverse
set of structures consistent with experiments appears
when ν g 3/4 and when Q e 5. Indeed, at this regime,
the phase behavior is quite different from that of
colloidal particles at the micrometer scale, and the
diversity of superstructures is much richer. Perhaps,
tuning the screening length or turning to the regime
0 < QAB < 1 may lead to a better agreement between
the model and experiments. This and other topics are
open for future study.

METHODOLOGY AND COMPUTATIONAL DETAILS

Thermodynamic Integration. To obtain the free energy of the
different crystal structures we follow a thermodynamic integration
scheme starting from the Einstein crystal.29 The approach is slightly
different fromtheoriginalworkof Frenkel andLadd30 in the specific
integration method and in the way we account for pressure:

(1) We start from a Monte Carlo (MC) simulation at constant
pressure (NPT ensemble) for a given set of model parameters
and a given crystal structure to obtain the average volume at
ambient conditions (P = 1 atm, T = 300 K). We used 500 000 MC
steps to equilibrate the system starting from the ideal volume
and an additional 500 000 MC steps were used for data acquisi-
tions. During this run, structures that were not stable for a given
set of model parameters were not included in the next thermo-
dynamic integration step.

(2) A thermodynamic integration scheme for a canonical
ensemble (NVT) was used to obtain the free energy of the
different crystal structures, where the volume was taken as the
average volume in the NPT run. The thermodynamic integration
was carried with respect to the Einstein crystal, F � FEin =R
0
1 dλ ÆUλ(r,λ)æλ,29 where the integration variable λ was defined

according to

Uλ(r) ¼ (1 � λ)U(r)þ λUEin(r)

U(r) ¼ ∑
N

i>j

νUH
ij (rij)þ (1 � ν)UY

ij (rij)

UEin(r) ¼ R∑
N

j

(rj � r0j )
2 (6)

In eq 6, r is a shorthand notation for the position vector of all
nanoparticles, rj is the position vector of particle j, rij is the
distance between nanoparticle i and j, rj

0 is the position vector of
nanoparticle j in a specific crystal structure,N is the total number
of nanoparticles in the system, and R is a spring constant deter-
mined according to ref 29. We used a simple Gauss-Laguerre
integration schemewith20 samplingpoints. ThevalueofUmax

HS was
chosen such that λminUmax

HS was sufficiently large to prevent
particles from interpenetrating during the thermodynamic in-
tegration. The cutoff distances were taken to be 2.5σij. For all
cases the energy at the cutoff distances wase10�6kBT. For each
value of λ, 200 000 MC steps were carried both for equilibration
and data acquisitions, separately.

The above procedure was repeated for each crystal struc-
ture and for each set of model parameters, that is, for different
values of κ, Q, ν, and size ratio of nanoparticles. In Table 4 we
summarize the results of the above procedure for the single
component hard spheres model and compare our approach
with the original study of Frenkel and Ladd (FL).30 The overall
agreement is excellent with differences smaller than 0.5% for
the larger system sizes.
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